B1: Inverse Probleme in vergröberten Partikelsimulationen
Vergröberung (CG) ist ein zentrales Werkzeug in den rechnergestützten Materialwissenschaften. Dennoch müssen die damit verbundenen Skalierungsprozesse mit äußerster Vorsicht angewendet werden. Jeder Interskalentransfer erfordert die Lösung eines inversen Problems, von denen viele schlecht gestellt oder zumindest schlecht konditioniert sind. In dem Projekt B1 wenden wir Techniken aus dem mathematischen Gebiet der inversen und schlecht gestellten Probleme an, um ein mathematisch rigoroses Fundament für existierende und/oder neue Vergröberungsprozesse zu schaffen. Weiterhin entwickeln wir neue Vergröberungsalgorithmen, die thermodynamische Randbedingungen in natürlicher Weise berücksichtigen.
Coarse-grained model of a nanoscale-segregated ionic liquid for simulations of low-temperature structure and dynamics
Journal of Physics: Condensed Matter 33 (20),
204002
(2021);
doi:10.1088/1361-648x/abe606
An interplay of excluded-volume and polymer–(co)solvent attractive interactions regulates polymer collapse in mixed solvents
The Journal of Chemical Physics 154 (13),
134903
(2021);
doi:10.1063/5.0046746
Iterative integral equation methods for structural coarse-graining
The Journal of Chemical Physics 154 (8),
084118
(2021);
doi:10.1063/5.0038633
Application of the 2PT model to understanding entropy change in molecular coarse-graining
Soft Materials 18 (2-3),
274-289
(2020);
doi:10.1080/1539445x.2020.1737118
A generalized Newton iteration for computing the solution of the inverse Henderson problem
Inverse Problems in Science and Engineering,
1-25
(2020);
doi:10.1080/17415977.2019.1710504
Does Preferential Adsorption Drive Cononsolvency?
Macromolecules 52 (11),
4131-4138
(2019);
doi:10.1021/acs.macromol.9b00575
A note on the uniqueness result for the inverse Henderson problem
Journal of Mathematical Physics 60 (9),
093303
(2019);
Highlighted on Scilight, see
https://aip.scitation.org/doi/10.1063/1.5134789
doi:10.1063/1.5112137
Relative entropy indicates an ideal concentration for structure-based coarse graining of binary mixtures
Phys. Rev. E 99,
053308
(2019);
doi:10.1103/PhysRevE.99.053308
Transferability of Local Density-Assisted Implicit Solvation Models for Homogeneous Fluid Mixtures
J. Chem. Theory Comp 15,
2881-2895
(2019);
doi:10.1021/acs.jctc.8b01170
Cosolute effects on polymer hydration drive hydrophobic collapse
J. Phys. Chem. B 122,
3587-3595
(2018);
doi:10.1021/acs.jpcb.7b10780
Addressing the temperature transferability of structure based coarse graining models
Phys.Chem.Chem.Phys 20,
6617-6628
(2018);
doi:10.1039/c7cp08246k
The Hydrophobic Effect and the Role of Cosolvents
The Journal of Physical Chemistry B 121 (43),
9986-9998
(2017);
doi:10.1021/acs.jpcb.7b06453
Molecular origin of urea driven hydrophobic polymer collapse and unfolding depending on side chain chemistry
Physical Chemistry Chemical Physics 19 (28),
18156-18161
(2017);
doi:10.1039/c7cp01743j
Fréchet differentiability of molecular distribution functions I. $$L^\infty $$ L ∞ analysis
Letters in Mathematical Physics 108 (2),
285-306
(2017);
doi:10.1007/s11005-017-1009-0
Well-Posedness of the Iterative Boltzmann Inversion
Journal of Statistical Physics 170 (3),
536-553
(2017);
doi:10.1007/s10955-017-1944-2
An inverse problem in statistical mechanics
in Oberwolfach Reports, Editor: Gerhard Huisken, Kapitel Report No. 08/2017, EMS, Zürich, Serie: Oberwolfach Reports , Vol. 14 (2017);
doi:10.4171/OWR/2017/8
Comparison of Different TMAO Force Fields and Their Impact on the Folding Equilibrium of a Hydrophobic Polymer
The Journal of Physical Chemistry B 120 (34),
8757-8767
(2016);
doi:10.1021/acs.jpcb.6b04100
Study of Hydrophobic Clustering in Partially Sulfonated Polystyrene Solutions with a Systematic Coarse-Grained Model
Macromolecules 49 (19),
7571-7580
(2016);
doi:10.1021/acs.macromol.6b01132
Comparison of iterative inverse coarse-graining methods
The European Physical Journal Special Topics 225 (8-9),
1323-1345
(2016);
doi:10.1140/epjst/e2016-60120-1
Mechanism of Polymer Collapse in Miscible Good Solvents
The Journal of Physical Chemistry B 119 (51),
15780-15788
(2015);
doi:10.1021/acs.jpcb.5b10684
Kontakt
- Prof. Dr. Martin Hanke-Bourgeois
- Institut für Mathematik
- Universität Mainz
- Staudingerweg 9
- D-55128 Mainz
- Tel: +49 6131 39 22528
- Fax: +49 6131 39 23331
- hankejwJPNq@xMsP.Gmathematik.uni-mainz.de
- http://www.mathematik.uni-mainz.de/Members/hanke
- Prof. Dr. Nico van der Vegt
- Institut für Physikalische Chemie
- Technische Universität Darmstadt
- Alarich-Weiss-Straße 10
- D-64287 Darmstadt
- Tel: +49 6151 16 4356
- Fax: +49 6151 16 2048
- vandervegtMtKopdKp@UOjjcpc.tu-darmstadt.de
- http://www.cpc.tu-darmstadt.de/