B1: Inverse problems in coarse-grained particle simulations
Coarse-graining (CG) is an indispensable tool in computational materials science, but the associated upscaling and downscaling processes have to be designed with great care. Each of these interscale transfers comes with important inverse problems to be solved, most of which are ill-posed or ill-conditioned. In this project, we apply rigorous techniques from the mathematical field of inverse and ill-posed problems to provide a mathematically rigorous foundation of existing and/or new upscaling processes. Furthermore, we develop novel CG algorithms in which one can incorporate thermodynamic constraints in a more natural way.
A generalized Newton iteration for computing the solution of the inverse Henderson problem
Inverse Problems in Science and Engineering,
1-25
(2020);
doi:10.1080/17415977.2019.1710504
A note on the uniqueness result for the inverse Henderson problem
Journal of Mathematical Physics 60 (9),
093303
(2019);
Highlighted on Scilight, see
https://aip.scitation.org/doi/10.1063/1.5134789
doi:10.1063/1.5112137
Relative entropy indicates an ideal concentration for structure-based coarse graining of binary mixtures
Phys. Rev. E 99,
053308
(2019);
doi:10.1103/PhysRevE.99.053308
Transferability of Local Density-Assisted Implicit Solvation Models for Homogeneous Fluid Mixtures
J. Chem. Theory Comp 15,
2881-2895
(2019);
doi:10.1021/acs.jctc.8b01170
Cosolute effects on polymer hydration drive hydrophobic collapse
J. Phys. Chem. B 122,
3587-3595
(2018);
doi:10.1021/acs.jpcb.7b10780
Addressing the temperature transferability of structure based coarse graining models
Phys.Chem.Chem.Phys 20,
6617-6628
(2018);
doi:10.1039/c7cp08246k
The Hydrophobic Effect and the Role of Cosolvents
The Journal of Physical Chemistry B 121 (43),
9986-9998
(2017);
doi:10.1021/acs.jpcb.7b06453
Molecular origin of urea driven hydrophobic polymer collapse and unfolding depending on side chain chemistry
Physical Chemistry Chemical Physics 19 (28),
18156-18161
(2017);
doi:10.1039/c7cp01743j
Fréchet differentiability of molecular distribution functions I. $$L^\infty $$ L ∞ analysis
Letters in Mathematical Physics 108 (2),
285-306
(2017);
doi:10.1007/s11005-017-1009-0
Well-Posedness of the Iterative Boltzmann Inversion
Journal of Statistical Physics 170 (3),
536-553
(2017);
doi:10.1007/s10955-017-1944-2
An inverse problem in statistical mechanics
in Oberwolfach Reports, Editor: Gerhard Huisken, Chapter Report No. 08/2017, EMS, Zürich, Series: Oberwolfach Reports , Vol. 14 (2017);
doi:10.4171/OWR/2017/8
Comparison of Different TMAO Force Fields and Their Impact on the Folding Equilibrium of a Hydrophobic Polymer
The Journal of Physical Chemistry B 120 (34),
8757-8767
(2016);
doi:10.1021/acs.jpcb.6b04100
Study of Hydrophobic Clustering in Partially Sulfonated Polystyrene Solutions with a Systematic Coarse-Grained Model
Macromolecules 49 (19),
7571-7580
(2016);
doi:10.1021/acs.macromol.6b01132
Comparison of iterative inverse coarse-graining methods
The European Physical Journal Special Topics 225 (8-9),
1323-1345
(2016);
doi:10.1140/epjst/e2016-60120-1
Mechanism of Polymer Collapse in Miscible Good Solvents
The Journal of Physical Chemistry B 119 (51),
15780-15788
(2015);
doi:10.1021/acs.jpcb.5b10684
Contact
- Prof. Dr. Martin Hanke-Bourgeois
- Institut für Mathematik
- Universität Mainz
- Staudingerweg 9
- D-55128 Mainz
- Tel: +49 6131 39 22528
- Fax: +49 6131 39 23331
- hankevB_uvp@urb-TuOfkxmathematik.uni-mainz.de
- http://www.mathematik.uni-mainz.de/Members/hanke
- Prof. Dr. Nico van der Vegt
- Institut für Physikalische Chemie
- Technische Universität Darmstadt
- Alarich-Weiss-Straße 10
- D-64287 Darmstadt
- Tel: +49 6151 16 4356
- Fax: +49 6151 16 2048
- vandervegtJI@eXtbcsi.tu-darmstadt.de
- http://www.cpc.tu-darmstadt.de/cpc/