Seminar
Kinetics and thermodynamics of Markov chain copolymerization
Tuesday, November 25, 2014 2:30 PM;
MPIP Mainz, Staudinger-Hörsaal
Speaker: Pierre Gaspard; Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles
At the molecular scale, the growth of a single copolymer is stochastic
and proceeds by successive random attachments or detachments of monomers
continuously supplied by the surrounding solution.
Remarkably, the kinetics of Bernoulli and first-order chain copolymerization
can be exactly solved in the presence of both attachment and detachment processes.
This allows us to establish the thermodynamics of copolymerization,
predicting the existence of a regime where copolymers can grow
in an adverse free-energy landscape thanks to the entropic effect of disorder
in their sequence of monomeric units. This disorder is characterized
in terms of quantities from information theory. This is also the case
for copolymerization with a template, in which case the thermodynamic
entropy production involves the mutual information between
the template and the growing copy. A further prediction
is that the ceiling temperature, where the growth speed is vanishing,
depends not only on the average enthalpy and entropy of copolymerization
but also on the Shannon disorder in the sequence grown near equilibrium.
References:
[1] D. Andrieux and P. Gaspard, Nonequilibrium generation of information
in copolymerization processes, Proc. Natl. Acad. Sci. USA 105, 9516 (2008).
[2] D. Andrieux and P. Gaspard, Molecular information processing
in nonequilibrium copolymerizations, J. Chem. Phys. 130, 014901 (2009).
[3] P. Gaspard and D. Andrieux, Kinetics and thermodynamics of
first-order Markov chain copolymerization, J. Chem. Phys. 141, 044908 (2014).
Calendar
Contact
- Scientific Coordinator of the TRR 146
- Dr. Giovanni Settanni
- Staudingerweg 9
- D-55128 Mainz
- trr146v_fyid@_dnjWituUNruni-mainz.de