Search Results

Search Results for: 17
Search-Engine: Internal WordPress search
Site-Search: Only results of this website will be shown.
Results: 12

Program PI Retreat 14.11.-15.11.2023 Tuesday, 14.11.2023 10:00-11:00 Arrival, Coffee and Board Meeting (for Board Members) 11:00-11:30 Update on Finances and IRTG 11:30-12:15 Talk by Martin Oberlack 12:15-13:30 Lunch Break 13:30-14:15 Talk by Thomas Speck 14:15-15:00 Talk by Friederike Schmid 15:00-16:00 Coffee Break 16:00-16:45 Talk by Michael Vogel 16:45-17:30 Talk by Lisa Hartung 17:30-18:00 Check-In 18:00-21:00 Winetasting and Dinner   Wednesday, 15.11.2023 09:30-10:15 Talk by Lukas Stelzl (hybrid) 10:15-10:45 Coffee break 10:45-11:30 Talk by Maria Lukacova 11:30-12:15 Talk by Kostas Daoulas 12:15-13:30 Lunch Break 13:30-14:15 Talk by Evangelia Charvati 14:15-open end PI Plenum and Final Discussions with Coffee  

IRTG Programming School 2023 – Program During the Programming School we will cover: Coarse-graining, deep learning, finite element methods, computational fluid dynamics, machine learning und stochastic processes. Monday, 25.09.2023 11:00-12:00 Talk about Machine Learning by Michael Wand 12:00-13:00 Tutorial on Machine Learning by Kyra Klos and Alexander Segner 13:00-14:00 Lunch 14:00-15:00 Talk about Deep Learning by Michael Wand 15:00-15:30 Coffee Break 15:30-17:30 Tutorial on Deep Learning by Kyra Klos and Alexander Segner 18:15-19:00 Dinner (only for people staying overnight)   Tuesday, 26.09.2023 10:00-11:00 Talk about the Finite Element Method by Aaron Brunk 11:00-11:30 Coffee Break 11:30-12:30 Talk about Comutational Fluid Dynamics by Aaron Brunk 12:30-13:30 Lunch 13:30-15:00 Tutorial 1 on Computational Fluid Dynamics using the Finite Element Method by Aaron Brunk 15:30-16:00 Coffee Break 16:00-17:30 Tutorial 2 on Computational Fluid Dynamics using the Finite Element Method by Aaron Brunk 18:15-19:00 Dinner (only for people staying overnight)   Wednesday, 27.09.2023 10:00-11:00 […]

Prof. Dr. Yongqi Wang Department of Mechanical Engineering Technische Universität Darmstadt Otto-Berndt-Str. 2 D-64287 Darmstadt Tel: +49 6151 1626202 Fax: +49 6151 1626203 Mail: wang@fdy.tu-darmstadt.de Further information

Prof. Dr. Markus Bachmayr Institut für Mathematik Universität Mainz Staudingerweg 9 D-55128 Mainz Tel: +49 6131 3920172 Fax: +49 6131 3923331 Secr: +49 6131 3922270 Mail: bachmayr@uni-mainz.de Further information

Prof. Dr. Herbert Egger Department of Mathematics Technische Universität Darmstadt Dolivostraße 15 D-64293 Darmstadt Tel: +49 6151 16-23170 Mail: egger@mathematik.tu-darmstadt.de Further information

Project C7: Dense active suspensions in the chaotic regime Active matter has become a quickly evolving field spanning from biology and physics to chemistry and engineering. Its defining property is the directed motion—translational, rotational, or both—of its constituents. This directed motion requires the steady input of free energy. Freed from the constraints of thermal equilibrium, active matter exhibits a wide range of novel phenomena; on the level of its single constituents up to emergent many-body collective and dynamic behavior. Extensively studied have been the aggregation of active particles into clusters, swarms, and other highly collective and dynamics states; but also spontaneous flow states where sufficiently high activity triggers the transition from a quiescent to a flowing fluid. At high densities, chaotic behavior has been reported in suspensions of bacteria and in numerical simulations. The aim of this project is to develop a comprehensive multiscale framework that bridges the properties of […]

Project C8: Numerical approximation of high-dimensional Fokker-Planck equations Stochastic processes driven by Brownian motion, which play a fundamental role in soft matter physics, can also be described by associated deterministic Fokker-Planck equations for probability distributions, where the dimensionality of the space on which this equation is posed increases linearly with respect to the number of particles. The aim of this project is to develop numerical solution methods for such high-dimensional problems that allow for the efficient extraction of quantities of interest, which typically take the form of certain integrals with respect to the computed distributions. In the high-dimensional case, beyond the basic numerical feasibility, a central issue is to ensure the accuracy of the computed solutions by suitable a posteriori error control. The initial focus of the project, which started during the second funding period, was on the development of numerical methods. On the one hand, we considered adaptive low-rank […]

Publications List of all publications sorted by year • 2023 • 2022 • 2021 • 2020 • 2019 • 2018 • 2017 • 2016 • 2015 • before 2015 2023 – Publications 2022 – Publications 2021 – Publications 2020 – Publications 2019 – Publications 2018 – Publications 2017 – Publications 2016 – Publications 2015 – Publications pre 2015 – Publications