Search Results

Search Results for: 44
Search-Engine: Internal WordPress search
Site-Search: Only results of this website will be shown.
Results: 4

Project C7: Dense active suspensions in the chaotic regime Active matter has become a quickly evolving field spanning from biology and physics to chemistry and engineering. Its defining property is the directed motion—translational, rotational, or both—of its constituents. This directed motion requires the steady input of free energy. Freed from the constraints of thermal equilibrium, active matter exhibits a wide range of novel phenomena; on the level of its single constituents up to emergent many-body collective and dynamic behavior. Extensively studied have been the aggregation of active particles into clusters, swarms, and other highly collective and dynamics states; but also spontaneous flow states where sufficiently high activity triggers the transition from a quiescent to a flowing fluid. At high densities, chaotic behavior has been reported in suspensions of bacteria and in numerical simulations. The aim of this project is to develop a comprehensive multiscale framework that bridges the properties of […]

Project A4 (Completed): Understanding Water Relaxation Dynamics at Interfaces The aim of the project is to develop multiscale approaches to understand the mechanisms of vibrational energy relaxation in water at interfaces and in confined environment. In the first funding period, we have developed an efficient method to describe molecular vibrational relaxation based on single molecule excitations and the use of new descriptors. In the second funding period, we plan to include nuclear quantum effects (NQEs), which may be important in water. We aim to develop a multi resolution scheme where the electronic structure is included with an effective force field, which accurately reproduces high-level ab initio calculations, while the NQEs are explicitly addressed with the path integral formalism. This project has ended in June 2022.